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Abs t rac t—I n  t h i s  paper I w i l l  d iscuss  how the
n a t u r e  o f  t h e  s t r e s s  s tate  in  the f lux- l ine  la t t i ce
(FLL) o f  superconductors ar ises  from the
dis tr ibut ion ,  dens i ty ,  geometry ,  and s trength o f
p i n n i n g  centers .   Under certain cond i t i ons  t h i s
s tress  causes  the  onset  of  p last ic  deformat ion in  the
FLL for  va lues  o f  the  current dens i ty  be low that
required  for  f lux- f low by  genera l  depinning .   I  wi l l
descr ibe  an  ana ly t i c  f ramework ,  based  on  a  theory
o f  p l a s t i c i t y  o f  t h e  F L L ,  w h i c h  d e s c r i b e s  t h e  f l u x -
f low charac ter i s t i c s ,  inc luding the p o s s i b i l i t y  o f
thermally-act ivated f low and f lux creep.

I.  INTRODUCTION

It has been known since the classic work of E. J. Kramer
[1] in the 1970s that for some superconductors the critical
current density (Jc) is controlled by plastic shear of the flux-
line lattice (FLL), rather than by a general, overall depinning
instability.  That is, flux-flow begins heterogeneously rather
than homogeneously.  This effect has been inferred from
experimental data on the dependence of Jc on the magnetic
induction (B) [1] and has been illustrated by means of
computer simulation [2].  Understanding of FLL plastic shear
was developed further by Pruymboom et al. [3], who utilized
as a measure of the strength of the FLL the theoretical shear
strength of a perfect FLL, approximately 0.05C66, where C66

is the FLL shear modulus.  Pruymboom et al. recognized that
the presence of dislocations in the FLL would reduce the
strength of the FLL and hence lower the value of Jc, but did
not explicitly develop this aspect of the problem.  Later,
Wördenweber and Abd-El-Hamed [4] utilized the concept of
plastic flow of the FLL within weak “channels” in the
pinning distribution to derive simulated voltage-current curves
which are very similar to those-observed for YBa2Cu3O7.  In a
subsequent short paper [5] I used the theory of dislocation
dynamics and plasticity in metals to generalize and extend the
earlier work of Pruymboom et al. [3] and Wördenweber and
Abd-El-Hamed [4] to include a more realistic description of
the effect of pinning strengths and densities on the plastic
shear strength, as well as to include explicitly the effects of
thermal activation.
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Recently, Tonomura et al. [6] used Lorentz electron
microscopy to image a variety of types of plastic flow in
FLLs within Bi2Sr2CaCu2O8 crystals.  The type of plastic
flow observed depends on the temperature, magnetic
induction, and on the size and density of dominant pinning
centers.  In this paper I will sketch the outlines of a
theoretical framework within which to examine the roles of
such factors.

II.  PLASTIC SHEAR OR GENERAL DEPINNING?

At a sufficiently large current density (J), the Lorentz forces
on the flux lines will overcome the pinning forces and flux
flow commences.  If the pinning centers are uniform in
strength and uniformly distributed and their density is
comparable to the density of flux lines, then conditions are
favorable for the onset of flux flow by homogeneous, wide-
spread depinning at a large enough value of the current
density.  If, however there is a spatially-varying distribution
in strength and/or density of pinning centers, then a state of
non-hydrostatic stress arises in the FLL.  If the shear
components of this stress exceed the critical shear strength,
i.e. the flow stress τc, of the FLL, then inhomogeneous flux
flow will occur by the mechanism of plastic deformation.  A
very simplified model, in which the distribution of pinning
force density varies periodically with distance along a
direction perpendicular to the direction of the Lorentz force on
the flux lines, illustrates the issues involved.  Suppose that
the distribution consists of alternate slabs with relatively
weak (w) and strong (s) pinning, of width qλ and (1-q) λ
respectively; i.e. , q is the fraction of the FLL at the earliest
risk of flow and Λ is the wavelength.  In such a case, the
criterion that flux flow will occur by plastic shear is found to
be [5]:  

  
τc < B / 2φo( )Λq 1− q( ) gfp

m( ) s
− gfp

m( )w
 
 

 
 (1)

where B is the magnetic induction, φo is the flux quantum,

  
fp

m  is the maximum value of the elementary pinning force

per unit length of flux line, g is the probability that a given
flux line is pinned, and the subscripts s and w denote the
strong and weak slabs respectively.  It can be seen that the
occurrence of FLL plasticity depends on the flux-line density
(B/φo) and the amplitude and wavelength of the variations of
pinning force density, as well as the strength of the FLL
resistance against plasticity (τc).
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III.  THE CRITICAL CURRENT DENSITY AND
CURRENT-VOLTAGE RELATIONS

Assume that the strength and structure of pinning centers
meets the criteria above, so that plastic shear of the FLL is
the mechanism of flux motion.  In order to derive the current-
voltage (I-V) relations of the superconductor it is necessary to
know the critical shear stress τc of the FLL, and this depends
on, among other factors, the ratio of the pinning center
density to the flux line density.  When these densities are
comparable, the FLL may not support the presence of
dislocations, in which case the shear strength of the FLL is
approximately that of a perfect lattice, .05C66, see, e.g. [3],
where C66 is the temperature-and-magnetic-field-dependent
elastic shear modulus of the FLL.  In this case, the I-V curve
can be derived from a step function (from dissipation-free
behavior to flux-flow in channels between pinning centers)
convoluted with a distribution function for channel widths
[4].

For lower ratios of pin density to flux-line density, the
FLL can sustain a population of dislocations, as shown
experimentally by Tonomura et al. [6].  In this case, the FLL
strain rate ˙ ε , and hence the average flux-line velocity, which
is proportional to the voltage V from (see, e.g. (9) in [5]), is
described by the Orowan kinetic equation:

V ∝ ˙ ε = ρmvb (2)

where ρm is the density of mobile dislocations, b is the
dislocation Burgers vector, given the present case by the FLL
spacing (φo/B)1/2, and v is average dislocation velocity arising
from the acting stress.  The latter factor depends upon whether
or not the temperature is high enough for thermal activation
to be significant.  Neglecting thermal activation, the
dislocation velocity v, in analogy with the case of metals and
alloys, is expected to be proportional to (τ–τc)

n where the
exponent n is in the range 1-10 and τc rises monotonically
with the dislocation density [7].  For the pinning center
distribution described in section I, the stress on the deforming
FLL is related to the local current density J by [5]:

  
τ =1 / 2 ⋅ΛqB J − gf p

m /φo( )w
 
 

 
                   . (3)

With a suitable description of the FLL flow stress τc, this
yields the dislocation velocity and combining this with (2)
yields the predicted I-V curve.  The density of mobile
dislocations, ρm, must be specified.  Not much is known
about this for the FLL, but it probably increases with
increasing velocity v.  (The derivation of the I-V curve when
thermal activation is significant is discussed in [5] and will
not be discussed further here for lack of space.)

IV.  CONCLUSIONS

By analogy with the physics of dislocation dynamics and
plasticity in metals and alloys, a theoretical framework can be
derived to describe current-voltage relations for
superconductors in which flux flow arises from the plastic
deformation of the flux-line lattice.
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